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Abstract

In this paper, element free Galerkin (EFG) method is combined with a precise algorithm in the time domain for

solving viscoelasticity problems. By expanding variables at discretized time intervals, an initial boundary value problem

is converted into a series of recurrent boundary value problems which can be conveniently solved by EFG/EFG-FE

with a self-adaptive computing process. There is no requirement of iteration for the solution of non-linear cases.

Satisfactory numerical results are obtained for both static and dynamical viscoelasticity problems.

� 2002 Published by Elsevier Science Ltd.
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1. Introduction

Viscoelasticity is related with many engineering aspects. The activities in this field have been primarily
due to the large scale development and utilization of polymeric materials (see e.g. Christensen, 1982).

The solution of viscoelasticity is time dependent. Due to the complexity of constitutive relationship,

boundary condition and boundary geometry etc. although discretized in the space, numerical techniques

are still required in the time domain for most cases.

For a specific discretized algorithm in the time domain, there are some decisive factors to be taken into

account, such as consistency, convergence and stability. In addition to the above factors, the computing

accuracy has to be considered. The computing accuracy is considerably affected by the size of time step that

usually may hardly be predicted in many cases.
Yang (1999) presented a new precise algorithm in the time domain, which is self-adaptive for the change

of the size of time step, and needs no iteration for the non-linear cases.

It is of interest to combine the above algorithm with the MESHLESS method, which has gained rapid

development in recent years, and takes some advantages in solving boundary value problems (see e.g.

Belytschko et al., 1994, 1996).
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In the field of numerical solution of viscoelasticity, a new attempt is made in this paper by combining the

precise algorithm in the time domain with element free Galerkin method (EFGM) and a coupled element

free Galerkin (EFG)-FE method. Numerical validations, including both static and dynamical cases, are

presented with satisfactory results.

2. Recurrent governing equations

The governing equation of dynamical viscoelasticity problems can be described by (see e.g. Christensen,

1982)

rij;j þ Bi ¼ q
o2ui
ot2

x 2 X ð1Þ

eij ¼ 1
2
ðui;j þ uj;iÞ ð2Þ

where rijðx; tÞ and eijðx; tÞ represent tensors of stress and strain, respectively, uiðx; tÞ is the vector of dis-

placement, qðxÞ denotes the mass density, Biðx; tÞ refers to body force, and X is the domain of the problem.

Summation convention is applied to subscribe j. For 2D problems, i, j range from 1 to 2, for 3D

problems i, j range from 1 to 3.

The boundary is specified by

ui ¼ ~uui x 2 Cu ð3Þ

rijnj ¼ pi ¼ ~ppi x 2 Cr ð4Þ

where nj represents the unit outside normal, pi refers to the vector of traction on the boundary, ~uui, ~ppi are
prescribed functions of ui and pi, C ¼ Cu þ Cr denotes the boundary of X, and subscripts u and r denote

stress and displacement, respectively.

Initial condition is

ui ¼ ~uu0i at t ¼ 0 ð5Þ

oui
ot

¼ vi ¼ ~vv0i at t ¼ 0 ð6Þ

where ~uu0i ðxÞ and ~vv0i ðxÞ are prescribed functions.

The constitutive relationship of viscoelasticity is described by (see e.g. Yang, 2000)

rij ¼ F ðelkÞ ð7Þ

where F ðelkÞ is a prescribed function.

Within the time interval t0 6 t6 t0 þ Ts, expanding all variables with term s then yields

rij ¼
X
m¼0

rm
ijs

m ð8Þ

eij ¼
X
m¼0

emijs
m ð9Þ

Bi ¼
X
m¼0

Bm
i s

m ð10Þ
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ui ¼
X
m¼0

umi s
m ð11Þ

~uui ¼
X
m¼0

~uumi s
m ð12Þ

pi ¼
X
m¼0

pmi s
m ð13Þ

~ppi ¼
X
m¼0

~ppmi s
m ð14Þ

where rm
ij , e

m
ij , B

m
i , u

m
i , ~uu

m
i , p

m
i and ~ppmi represent expanding coefficients of rij, eij, Bi, ui, ~uui, pi and ~ppi, respectively.

s ¼ t � t0
Ts

ð15Þ

where t0 and Ts refer to the initial point and size of the time interval, respectively.

By virtue of the chain rule

d

dt
¼ d

ds
ds
dt

¼ 1

Ts

d

ds
ð16Þ

d2

dt2
¼ 1

T 2
s

d2

ds2
ð17Þ

the first and second order derivatives of T with respect to t can be written as

oui
ot

¼
X
m¼0

mþ 1

Ts
umþ1
i sm ð18Þ

o2ui
ot2

¼
X
m¼0

ðmþ 2Þðmþ 1Þ
T 2
s

umþ2
i sm ð19Þ

Substitution of Eqs. (8)–(19) for Eqs. (1)–(4) then yields

rm
ij;j þ Bm

i ¼ ðmþ 1Þðmþ 2Þ
T 2
s

qumþ2
i x 2 X ð20Þ

emij ¼ 1
2
ðumi;j þ umj;iÞ ð21Þ

umþ2
i ¼ ~uumþ2

i x 2 Cu ð22Þ

rm
ijnj ¼ pmi ¼ ~ppmi x 2 Cr ð23Þ

For a kind of viscoelastic materials, Eq. (14) can be written as (see e.g. Yang, 2000)

rm
ij ¼ Dijkl

Xm
n¼0

cm;m�nem�n
kl ð24Þ

where coefficient cm;m�n and tensor Dijkl are constants.
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3. Implementation of EFGM

By utilizing a weighing residual technique, Eqs. (20)–(24) can be written in a weak form (see e.g.

Zienkiewicz and Morgan, 1983).Z
X

rm
ij;j

�
þ Bm

i � q
ðmþ 1Þðmþ 2Þ

T 2
s

umþ2
i

�
u�i dvþ

Z
Cu

ðumþ2
i � ~uumþ2

i Þp�i dC �
Z

Cr

ðpmi � ~ppmi Þu�i dC ¼ 0 ð25Þ

where u�i and p�i are weighting functions.

The application of integral by parts for the above equation leads to

ðmþ 1Þðmþ 2Þ
T 2
s

Z
X
umþ2
i qu�i dv ¼

Z
X
Bm
i u

�
i dvþ

Z
Cr

~ppmi u
�
i dC þ

Z
Cu

pmi u
�
i dC þ

Z
Cu

ðumþ2
i � ~uumþ2

i Þp�i dC

�
Z

X
rm
iju

�
i;j dv ð26Þ

By using EFG technique, umi and u�i are approximated by

umi ¼ ½U	f�uumi g ð27Þ

u�i ¼ ½U	f�uu�i g ð28Þ
where f�uumi g and f�uu�i g are the nodal vectors of umi and u�i , respectively, and ½U	 represents a matrix of shape

functions.

General nodal vectors are defined by

f�uumgT ¼ f�uum1 g
T f�uum2 g

T f�uum3 g
T

� �
ð29Þ

f�uu�gT ¼ f�uu�1g
T f�uu�2g

T f�uu�3g
T

� �
ð30Þ

pmi and p�i can be interpolated along the boundary, having the form

pmi ¼ ½N 	f�ppmi g ð31Þ

p�i ¼ ½N 	f�pp�i g ð32Þ
where ½N 	 is a matrix of Lagrangian interpolating functions, f�ppmi g and f�pp�i g are the nodal vectors of pmi and

p�i , respectively.
The general nodal vectors of f�ppmi g and f�pp�i g are defined by

f�ppmgT ¼ f�ppm1 g
T f�ppm2 g

T f�ppm3 g
T

� �
ð33Þ

f�pp�gT ¼ f�pp�1g
T f�pp�2g

T f�pp�3g
T

� �
ð34Þ

Substituting Eqs. (29)–(34) for Eq. (26) with arbitrary f�uu�gT and f�pp�gT then yields

Am Bm

BT
m 0

� �
�uumþ2

�ppm

( )
¼ Fm

fm

� �
ð35Þ

where

Am ¼ ðmþ 1Þðmþ 2Þ
T 2
s

Z
X
½U	Tq½U	dv ð36Þ
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Fm ¼
Z

X
½U	TfBmgdvþ

Z
C2

½U	Tf~ppmgdv�
Z

X
½U0	Tfrmgdv ð37Þ

Bm ¼ �
Z

Cu

½U	T½N 	dC ð38Þ

fm ¼ �
Z

Cu

½N 	Tf~uumþ2gdC ð39Þ

where ½U0	 represents a matrix of derivatives of ½U	.
By using Eq. (24), Eq. (37) can be expressed as

Fm ¼
Z

X
½U	TfBmgdvþ

Z
C2

½U	Tf~ppmgdv�
Xm
n¼0

Z
X
½U0	T½Cm;m�n	½U0	dv

� �
f�uum�ng ð40Þ

where matrix ½Cm;m�n	 is associated with cm;m�n and Dijkl.

For the case of static viscoelasticity problems, all the terms relevant to the dynamical effect need to be

removed.

4. Coupled FE-EFG technique

Coupled EF-EFG schemes can be used to avoid inconvenience caused by dealing with essential

boundary conditions via EFGM. Belytschko (see e.g. Belytschko, 1991, Belytschko et al., 1995) proposed a

variational principle based coupling scheme which is rigorous and accurate, and can pass the patch test. In

this paper, to simply illustrate the implementation combining coupled FE-EFG method with the precise

algorithm, a coupling technique, which has been developed for the coupling boundary and finite element

method (see e.g. Brebbia, 1984, Brebbia et al., 1984, Takao and Hidehero, 1988, Cox, 1988) is employed
without constructing the interface element with hybrid displacement approximation in contrast to the

scheme (see e.g. Belytschko et al., 1995).

Divide the whole domain into two parts, i.e. EFG domain, and FE domain where all the essential

boundaries are assumed to be included.

In FE domain, a recurrent formula can be written as (Yang, 1999)

ðmþ 1Þðmþ 2Þ
T 2
s

½MFE	f�uumþ2
FE g ¼ fF FE

m g þ ff FE
m g �

Xm
n¼0

½KFE
m;m�n	f�uum�n

FE g þ ½G	f�ppmI g ð41Þ

where f�uumFEg is a nodal vector of expanding coefficient of displacement, f�ppmI g, unknown, refers to a nodal

vector of expanding coefficient of traction on the interface.

½MFE	 ¼
X
e

Z
Xe

½N 	Tq½N 	dv ð42Þ

fF FE
m g ¼

X
e

Z
Xe

½N 	TfBmgdv ð43Þ

ff FE
m g ¼

X
e

Z
Ce

r

½N 	Tf~ppmgdC ð44Þ
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½KFE
m;m�n	 ¼

X
e

Xm
n¼0

Z
Xe

½N 0	T½Cm;m�n	½N 0	dv ð45Þ

½G	 ¼
X
e

Z
Ce
I

½N 	T½N 	dC ð46Þ

½N 	 and ½N 0	 denote matrixes of shape functions and their derivatives, respectively, summation
P

e covers all

finite elements.
Re-write Eq. (41) in the form

½AFE
m 	f�uumþ2

FE g ¼ fbFEm g þ ½G	f�ppmI g ð47Þ

where

½AFE
m 	 ¼ ðmþ 1Þðmþ 2Þ

T 2
s

½MFE	 ð48Þ

fbFEm g ¼ fF FE
m g þ ff FE

m g �
Xm
n¼0

½KFE
m;m�n	fum�n

FE g ð49Þ

By making use of

ðpmI Þ
EFG ¼ �ðpmI Þ

FE ¼ �½N 	fð�ppmI Þg
Eq. (32) in the EFG domain can be rewritten as

ðmþ 1Þðmþ 2Þ
T 2
s

½MEFG	f�uumþ2
EFGg ¼ fF EFG

m g þ ff EFG
m g �

Xm
n¼0

½KEFG
m;m�n	f�uum�n

EFGg � ½JEFG	f�ppmI g ð50Þ

where f�uumEFGg denotes the nodal vector of expanding coefficient of displacement, fpmI g denotes the vector of

traction on the interface, both subscripts and superscripts FE and EFG refer to EF domain and EFG

domain, respectively.

½MEFG	 ¼
Z

XEFG

½U	Tq½U	dv ð51Þ

fF EFG
m g ¼

Z
XEFG

½U	TfBmgdv ð52Þ

ff EFG
m g ¼

Z
CEFG

r

½U	Tf~ppmgdC ð53Þ

½KEFG
m;m�n	 ¼

Z
XEFG

½U0	T½Cm;m�n	½U0	dv ð54Þ

½JEFG	 ¼
X
e

Z
Ce
I

½U	T½N 	dC ð55Þ

Eq. (50) can further be written as

½AEFG
m 	f�uumþ2

EFGg ¼ fbEFGm g � ½JEFG	f�ppmI g ð56Þ
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where

½AEFG
m 	 ¼ ðmþ 1Þðmþ 2Þ

T 2
s

½MEFG	 ð57Þ

fbEFGm g ¼ fF EFG
m g þ ff EFG

m g �
Xm
n¼0

½KEFG
m;m�n	f�uum�n

EFGg ð58Þ

In the FE domain, separating the nodes at the interface from others then yields

f�uumFEg
T ¼ f�uumFEg

T

a f�uumFEg
T

b

� �
ð59Þ

where subscripts b and a refer to the nodes at the interface and others else, respectively.

Since ½G	 is only available at the interface Eq. (47) can be written in the form

ðAFE
m Þaa ðAFE

m Þab
ðAFE

m Þba ðAFE
m Þbb

� �
ð�uumþ2

FE Þa
ð�uumþ2

FE Þb

( )
¼ ðbFEm Þa

ðbFEm Þb

� �
þ 0

G

� �
f�ppmI g ð60Þ

f�ppmI g can be obtained via Eq. (60), having the form

f�ppmI g ¼ ½G	�1 ½ðAFE
m Þba	fð�uumþ2

FE Þag
�

þ ½ðAFE
m Þbb	fð�uumþ2

FE Þbg � fðbFEm Þbg
�

ð61Þ

Substituting Eq. (61) for Eq. (56) with a rearrangement can yield

½Am	f�uumþ2g ¼ fbmg ð62Þ
where

½Am	 ¼
AEFG
m þ JEFGJ�1

FEðAFE
m ÞbbH JEFGJ�1

FEðAFE
m Þba

ðAFE
m ÞabH ðAFE

m Þaa

� �
ð63Þ

fbmg ¼ bEFGm þ JEFGJ�1
FE ðbFEm Þb

ðbFEm Þa

� �
ð64Þ

f�uumþ2gT ¼ f�uumþ2
EFGg

T fð�uumþ2
FE Þag

T
� �

ð65Þ

fð�uumFEÞbg ¼ ½H 	f�uumEFGg ð66Þ

½H 	T ¼ ½U	jnode 1 ½U	jnode 2 . . . ½U	jnode nI
� �T ð67Þ

nI is an integer representing the number of nodes at the interface.

5. Numerical validation

Example 1 (Free vibration of a viscoelastic rod ). Consider a free vibration of a viscoelastic rod with

q ¼ 100:0 and L ¼ 0:9.
A Kelvin model with q0 ¼ 1:0 and q1 ¼ 2:0, is used in the computation.

The initial condition is

uðx; 0Þ ¼ ~uu0ðxÞ ¼ 0
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ouðx; tÞ
ot

����
t¼0

¼ vðx; 0Þ ¼ ~vv0ðxÞ ¼ 0:75
x
L

In the computing

Ts ¼ 0:2 s; b ¼ 1� 10�4

15 equidistant nodes and two finite elements are employed.

Numerical comparisons with a FE based precise algorithm (see e.g. Gao, 1999) are exhibited from
Figs. 2–6.

Example 2 (1D static viscoelastic problems). A viscoelastic rod, as shown in Fig. 1, is subjected to a load P ðtÞ
at the right end. Various solutions of displacement are obtained for different constitutive models, and

compared with analytical solutions (see e.g. Gao, 1999).

In the computing b ¼ 0:0001.
The initial condition is

uðx; 0Þ ¼ ~uu0ðxÞ ¼ 0

Fig. 2. Numerical comparison of displacement at x ¼ 0:3.

Fig. 1. A viscoelastic rod.
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(1) Linear model:

P ðtÞ ¼ 1:0 06 t6 4:0
0 t > 4:0

�

Computing parameters are given in Table 1, numerical comparisons are exhibited in Table 2 and Fig. 7.

(2) Linear model:

P ðtÞ ¼ P0HðtÞ

Fig. 3. Numerical comparison of displacement at x ¼ 0:6.

Fig. 4. Numerical comparison of displacement at x ¼ 0:9.
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Fig. 5. Numerical comparison of displacement at t ¼ 8:2 s.

Fig. 6. Numerical comparison of displacement at t ¼ 30:0 s.

Table 1

Computing parameters

Parameters p1 q0 q1 L Ts Number of nodes

Values 0.5 4� 105 8� 105 1.0 0.1 11
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where

HðtÞ ¼ 0 t < 0

HðtÞ ¼ 1 tP 0

Computing parameters are given in Table 3, numerical comparisons are shown in Tables 4 and 5.

(3) Kelvin model:

P ðtÞ ¼ P0HðtÞ

Computing parameters are listed in Table 6, numerical comparisons are exhibited in Tables 7 and 8.

Table 2

Numerical comparison of displacement at t ¼ 3:0, 6.0

x t ¼ 3:0 t ¼ 6:0

Presented method (EFG) Analytical solution Presented method (EFG) Analytical solution

0.2 4.1631E)07 4.1633E)07 1.1928E)007 1.1928E)007
0.5 1.0408E)06 1.0408E)06 2.9821E)007 2.9821E)007
0.7 1.4571E)06 1.4571E)06 4.1749E)007 4.1750E)007
0.9 1.8734E)06 1.8735E)06 5.3676E)007 5.3678E)007
1.0 2.0816E)06 2.0816E)06 5.9642E)007 5.9642E)007

Fig. 7. Numerical comparison of displacement at x ¼ 0:9.

Table 3

Computing parameters

Parameters p1 q0 q1 L P Number of

nodes

Number of elements

Values 1.0 1:2� 105 2:0� 105 1.0 1000.0 10 1
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Table 4

Numerical comparison of displacement at x ¼ 1:0, 0.7

x Size of time step t Presented method

(EFG-FE)

Analytical solution

1.0 0.1 0.1 5.1941E)003 5.1941E)003
0.2 5.3769E)003 5.3769E)003
0.3 5.5491E)003 5.5491E)003
0.4 5.7112E)003 5.7112E)003
0.5 5.8639E)003 5.8639E)003

0.5 0.5 5.8639E)003 5.8639E)003
1.0 6.5040E)003 6.5040E)003
1.5 6.9781E)003 6.9781E)003
2.0 7.3293E)003 7.3294E)003
2.5 7.5895E)003 7.5896E)003

0.7 0.2 0.2 3.7638E)003 3.7639E)003
0.4 3.9979E)003 3.9979E)003
0.6 4.2054E)003 4.2054E)003
0.8 4.3895E)003 4.3895E)003
1.0 4.5528E)003 4.5528E)003

0.4 0.4 3.9978E)003 3.9979E)003
0.8 4.3895E)003 4.3895E)003
1.2 4.6975E)003 4.6976E)003
1.6 4.9399E)003 4.9399E)003

Table 5

Numerical comparison of displacement at t ¼ 5:0

Size of time step x Presented method (EFG-FE) Analytical solution

5.0 0.2 1.6338E)003 1.6335E)003
0.4 3.2670E)003 3.2670E)003
0.6 4.9004E)003 4.9004E)003
0.8 6.5339E)003 6.5339E)003
1.0 8.1673E)003 8.1674E)003

Table 6

Computing parameters

Parameters q0 q1 L P Number of nodes Number of elements

Values 5:0� 105 2:4� 105 1.0 4000.0 10 1

Table 7

Numerical comparison of displacement at x ¼ 0:5, 0.8

x Size of time step t Presented method

(EFG-FE)

Analytical solution

0.5 0.3 0.3 1.8590E)003 1.8590E)003
0.6 2.8540E)003 2.8540E)003
0.9 3.3866E)003 3.3866E)003
1.2 3.6716E)003 3.6717E)003
1.5 3.8243E)003 3.8243E)003

0.8 0.9 0.9 5.4186E)003 5.4185E)003
1.8 6.2495E)003 6.2495E)003
2.7 6.3769E)003 6.3769E)003
3.6 6.3966E)003 6.3965E)003
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6. Conclusions

The major objective of this paper is to make a new attempt combining EFGM with a precise algorithm

in the time domain to solve viscoelasticity problems, the merits of this combination include

1. An initial boundary value problem is converted into a series of recurrent boundary value prob-

lems which are solved by EFGM as in the case of static elasticity. In addition to EFGM, other well

developed numerical approaches can also be adopted with a specific consideration of characteris-

tics of the problem, including in-homogeneity, complex boundary shape, and boundary conditions

etc.

2. A self-adaptive computation can be realized by using the precise algorithm in the time domain, which

results in a more precise description for the variation of variables, and compensates the possible lost
computing accuracy caused by improper choices of the size of time step.

3. For non-linear cases, no any assumption is made, and no any iteration is needed.

4. By utilizing a coupling technique developed for the coupling FE-BE method, the implementation com-

bining coupled FE-EFG methods with the precise algorithm in time domain is simply illustrated. Math-

ematically Eqs. (20)–(24) can also definitely be solved via the coupling approach proposed by Belytschko

(see e.g. Belytschko, 1991, Belytschko et al., 1995), which is more accurate than the coupling technique

used in this paper (see e.g. Belytschko, 1991), and is being employed by authors for solving 2D viscoelas-

ticity problems with an expectation of more perfect results.

Numerical validation, including both static and dynamical cases, presents a good accordance with other

solutions, which do encourage authors to extend present work to other fields. In fact, some preliminary

results have been achieved for the solutions of heat conduction problems, and will be presented somewhere

else.
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